Headquarters U.S. Air Force

Integrity - Service - Excellence

Alternative Landfill Covers

Victor L. Hauser Mitretek Systems 30 January 2001

Topics Covered

- Characteristics of landfills and covers
- Air Force landfill remediation issues
- Alternative landfill covers
- Evapotranspiration (ET) landfill covers
- Sources of information for military planners and managers
- Conclusions

Typical Characteristics of Landfills

- Contain large volumes of waste
- Potential to contaminate groundwater or the environment
- Cover large land areas
- Contents have low economic value
- Expensive to treat or move the waste

These landfill characteristics lead to the current concept of waste storage in place

- Long-term waste storage in place or warehousing
- Objective: Keep it dry to prevent leaching

Similar to storing antique cars for decades

Landfill Containment Requirements

- Surface cover
- If needed
 - Gas collection and control
 - Groundwater treatment/containment
 - Leachate collection and disposal
- The cover should
 - Minimize infiltration
 - Isolate waste
 - Control landfill gas

Why Focus on Landfill Covers?

- Required by presumptive remedy
- Typically most costly component
- Cover choice impacts long-term protectiveness and cost

Landfill Remediation Issues

- Storage life—tens or hundreds of years
- No regulatory mechanism for terminating storage
- Costs continue indefinitely

Laws require a commitment to protect human health and the environment.

What steps are needed to meet the requirements of law?

Steps in Landfill Remediation

- 1. Site investigation
- 2. Installation
- 3. Long-term maintenance and monitoring

Remediation Comparison

Decisions made during Steps 1 and 2 control costs

Air Force Landfill Characteristics*

86% of landfills inactive for more than 20 years (1998 data)

*Based on sample size of 41% of Air Force landfills (1998 data)

Air Force Landfill Characteristics (Concluded)*

20%
< 1%
23%
%
%
,

Air Force landfills are different from "typical" landfills

*Based on sample size of 41% of Air Force landfills (1998 data)

Landfill Covers

- Conventional barrier-type covers
 - RCRA: single- or double-barrier
 - Subtitle D barrier cover
- Alternative barrier-type covers
 - Capillary break
 - Asphalt barrier
- Alternative non-barrier covers
 - Modified surface runoff (rain gutter concept)
 - Vegetative
 - Evapotranspiration (ET) cover

Conventional Landfill Cover

Subtitle D — Modified Conventional

Compacted Soil Barrier

Foundation

Waste

Alternative Covers—Barrier

Conventional Clay Barrier

Capillary Break

Asphalt Barrier

Alternative Covers—No Barrier

Modified Surface Runoff

Vegetative

compacted soil

ET Cover

optimized soil

ET Landfill Cover

No barrier layer

Plants "pump" water from soil

Field Verification of ET Cover Concept

Short-Term Experiments

- One or more experimental treatments similar to ET cover at each site
- No water movement below grass roots

Precipitation inches

Mineland Experiment

- Warm, wet climate
 - Covers similar to an ET cover
 - 8 years No water movement below grass roots

Long-Term Measurements

- 33 years Pawnee National Grasslands (Colo. State. Univ. & USDA)
- Centuries Bushland, TX (USDA)

No water movement below roots of native grass

Long-Term Measurements Saline Seep Region

Saline Seep Region (Concluded)

 12,000 years—No water movement below roots of native grass

Ft. Benton, MT, Ferguson and Bateridge, 1982, SSSA 46:407

Extrapolation to a Landfill Site

- Model required to extrapolate from proven sites
- Environmental Policy Integrated Climate (EPIC) model contains comprehensive models for
 - Climate
 - Soil
 - Plants
 - Hydrology (including soil water balance)
- EPIC model operates on a daily time step
- EPIC model capable of modeling thousands of years

Geographic Application for ET Covers

Design Criteria for the Critical Event on an ET Cover

- Objectives
 - Evaluate performance with maximum water load
 - Minimize percolation through the landfill
- Cover design requires
 - Adequate soil thickness to store water
 - Adequate root growth rate to extract water stored as a result of the design storm event
- Meeting the design requirements
 - Use variety of models and field tests to evaluate performance

Optimizing Root Growth (The Overlooked Requirement)

Effect of soil bulk density (B_d) on root growth

From: Sharpley & Williams, 1990, pp. 56-57

Advantages of ET Cover: Protectiveness

- Natural system—less prone to failure
- More protective of human health and environment because it is less prone to failure
- Design and construction time—less than conventional covers
- Long life (many decades to centuries)

Advantages of ET Cover: Cost Avoidance

- Conservative estimate (most of country)
 - Save \$150K to \$200K per acre
- Estimates for one landfill in a semiarid climate
 - Save \$212K to \$247K per acre
- Potential Air Force cost avoidance
 - \$500 to \$750 million

Impact of Reuse on Landfill Cover Performance

- Landfills cover large areas, thus reuse is desirable
- Compatible reuse
 - Nature areas or wildlife preserves
 - Hiking and biking trails
- Incompatible reuse (substantial risk)
 - Buildings and parking lots
 - Golf courses

Available from the Air Force Center for Environmental Excellence: **Golf Courses on Air Force Landfills**

http://www.afcee.brooks.af.mil/er/ert/erthome.htm

AFCEE Resources for Landfill Remediation

Five new documents

- Contain both old and new cover technology
- Focus on military needs in
 - Planning
 - Negotiations with regulators
 - Design and construction
 - Long-term maintenance operations
 - Interaction with contractors
 - Land reuse

New AFCEE Resource Titles

- Landfill Covers for Use at Air Force Installations
- Survey of Air Force Landfills, their Characteristics, and Remediation Strategies (includes a database)
- Decision Tool for Landfill Remediation
- Landfill Remediation Project Manager's Handbook
- Golf Courses on Air Force Landfills

Available from the Air Force Center for Environmental Excellence http://www.afcee.brooks.af.mil/er/ert/erthome.htm

Conclusions

- Conventional barrier covers are available for use
- Alternative covers have potential for
 - Improved protection of human health and the environment
 - Large cost savings
- ET cover technology is available
- Military manager has new and better resources available from AFCEE